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Molecular Epidemiology of Vitamin D Receptor Gene Variants
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INTRODUCTION

The vitamin D receptor (VDR) is a ligand-activated tran-
scription factor that mediates the genomic effects of 1,25-
dihydroxyvitamin D in a wide variety of tissues. The gene
encoding the VDR is located on chromosome 12q and has
several common allelic variants. The individual allelic vari-
ants and their haplotypes have been widely studied as mark-
ers of susceptibility to osteoporosis, a prevalent metabolic
bone disease characterized by reduced bone mass and a
resultant increased susceptibility to fracture. More recent
attention has focused on the possible role of VDR gene vari-
ation in the development of other diseases, including breast
and prostate cancer, osteoarthritis, atherosclerotic coronary
artery disease, diabetes, primary hyperparathyroidism, sus-
ceptibility to infection, and psoriasis. In this paper, we
review the evidence for a role of common molecular varia-
tion in the VDR gene in osteoporosis and other diseases and
discuss areas in need of further investigation.

VITAMIN D RECEPTOR GENE

Genomic organization

The VDR belongs to the steroid and thyroid hormone
receptor family of ligand-activated transcription factors. The
VDR mediates the effects of 1,25-dihydroxyvitamin D
(1,25(OH)2D) on gene expression (1). The gene encoding
the VDR is located on chromosome 12cen-ql2 (2), contains
14 exons (3), and spans approximately 75 kilobases of
genomic DNA (4). Exons IA through IF encode the 5'
untranslated region, exons II and III encode the DNA-bind-
ing domain, and exons FV-IX encode the ligand-binding
region (3, 5). The expression of the human VDR is under
complex transcriptional control by multiple tissue-specific
promoters (3).
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Allelic variants

At least 22 unique loss-of-function mutations in the VDR
gene have been reported (6, 7). Single nucleotide changes
producing amino acid substitutions in the DNA- and ligand-
binding domains are the predominate type of mutation
found (6). Less frequent mutations, including premature
stop codons, cryptic splice sites, and a partial gene deletion,
have also been described (6, 8, 9). These mutations cause
hereditary vitamin D-resistant rickets, a rare autosomal
recessive disease resulting from target organ resistance to
1,25(OH)2D (6). An updated database of rare VDR muta-
tions can be found on the Human Gene Mutation Database
(http://www.uwcm.ac.uk/uwcm/mg/hgmdO.html).

Several common allelic variants have also been identified
in the VDR gene and are the focus of the present review (fig-
ure 1). The presence of a T/C transition polymorphism
(ATG to ACG) at the first of two potential translation initia-
tion sites in exon II (10) has been defined using the Fokl
restriction endonuclease (11). Individuals with the C allele
(designated F) initiate translation at the second ATG site and
lack the three NH2~ terminal amino acids of the full-length
VDR protein (12). In contrast, individuals with the T allele
(designated f) initiate translation at the first ATG site and
synthesize the full-length (427 amino acids) VDR protein
(12). The ff genotype frequency was 4 percent among
African Americans and 13-18 percent among Asians and
Caucasians in one report (13).

Bsml (14) and Apal (15) restriction site polymorphisms
occur in the intron separating exons VIII and IX (figure 1).
A T/C nucleotide substitution (ATT to ATC) leading to a
synonymous change at codon 352 (isoleucine) in exon IX
has also been described (16) and is detected by the restric-
tion enzyme Taql. The Bsml and Fokl alleles do not appear
to be in linkage disequilibrium (11, 13, 17, 18), whereas a
strong concordance exists between the absence of the Bsml
(B allele) and presence of the Taql (t allele) sites (19), and
these sites show significant linkage disequilibrium with the
Apal polymorphism. Hustmyer et al. (16) detected a rare
third allele by Apal digestion in African Americans, but
more recent PCR-based typing of the Apal polymorphism
has not detected the presence of this allele. Morrison et al.
(14) reported a fifth restriction site polymorphism, detected
by southern blot analysis of EcoRV digested genomic DNA
probed with a VDR complementary DNA probe, and
Hustmyer et al. (16) showed that the frequency of the two
alleles at this locus varied among Caucasians, African
Americans, and Asians. The molecular basis of this poly-
morphism is unknown, and recent studies using PCR-based

203

D
ow

nloaded from
 https://academ

ic.oup.com
/epirev/article/22/2/203/456955 by guest on 09 April 2024



204 Zmuda et al.

Fokl

Apal

Bsml\ Taql poly(A)

IX UTR

ATGGAGGCAA
Met-Glu-Ala-Met

ACGGAGGCAATG
Met

6
lie

ATI
lie

FIGURE 1. Schematic diagram of the human vitamin D receptor gene and the location of its naturally occurring polymorphisms.

assays have not genotyped this variation. Because few stud-
ies of the EcoKV polymorphism are available, we have not
reviewed this variant.

The Bsml bb genotype frequency was 2 percent among
Asians, 5 percent among African Americans, and 17 percent
among Caucasians in a meta-analysis (20). The frequency of
Taql genotypes in these populations is similar to Bsml geno-
type frequencies. The Apal AA genotype frequency is 9 per-
cent among Asians (21), 28 percent among Caucasians (22),
and 44 percent among African Americans (23).

A mononucleotide repeat [(A)n] polymorphism that
varies in length from 13 to 24 adenosines (12 alleles)
(poly(A)) occurs in the 3' untranslated region of the VDR
gene (24). The distribution of allele size is bimodal, such
that individuals can be classified as having short (A]3-A17)
or long (A18-A24) alleles (24). The frequency of short alleles
in one study was 5-10 percent among Asians, 32 percent
among African Americans, and 41 percent among
Caucasians (24). The longest alleles (A23-A24) in that study
were found only among African Americans, whereas the
shortest allele (A13) was found only among Hispanics (24).

Linkage disequilibrium has been reported between the
poly(A) and Bsml alleles, such that the short poly(A) and
Bsml B alleles (BS haplotype) and the long poly(A) and
Bsml b alleles (bL haplotype) are coupled. Linkage dis-
equilibrium is nearly complete among Caucasian Americans
(disequilibrium coefficient, 0.96) and Japanese Americans
(disequilibrium coefficient, 0.90), but is less pronounced
among African Americans (disequilibrium coefficient, 0.53)
(24). Poly(A) and Fokl alleles do not appear to be in linkage
disequilibrium (25, 26).

VITAMIN D RECEPTOR ALLELIC VARIANTS AND
OSTEOPOROTIC RISK

Early infant growth and skeletal size

Vitamin D regulates the differentiation and proliferation of
cells responsible for skeletal and overall somatic growth
(27), and mice lacking the VDR gene experience severe
growth retardation (28). Several reports demonstrate that
common VDR gene variants are associated with early infant

growth and skeletal size, although these findings have been
inconsistent, possibly because of the relatively small sample
size of these studies. For example, girls aged 7 years with the
TT genotype were 3.9 kg heavier (p = 0.03) and 4.1 cm taller
(p = 0.008) than were those with the tt genotype in one study
(29), whereas in another self-reported body weight at age 1
year was significantly lower among adult women with the
TT genotype (30). Differences in age or ethnicity might also
explain the conflicting findings of these studies.

Girls aged 2 years with the BB genotype were taller (p <
0.05) and heavier (p < 0.01) than were girls with the bb
genotype (31). In contrast, boys with the BB genotype
weighed less (p < 0.01) than those with the bb genotype, an
effect that was also observed at birth (31). Lower height at
birth, decreased growth during adolescence, and shorter
adult stature has been confirmed among boys with the BB
genotype (32). The decreased body size among male infants
with the BB genotype in another study was confined to
those who were also homozygous for a PvuII site in intron
one of the estrogen receptor gene (33). Although less well
studied, the Fokl variant has also been associated with
stature in Japanese girls (34). These data raise the possibil-
ity that molecular variation in the VDR gene influences
intrauterine, early postnatal, and adolescent growth and that
the effect may be modified by allelic variation in other
growth-regulating genes and by gender.

Bone mass, postmenopausal bone loss, and osteo-
porotic risk

Growth in infancy is associated with skeletal size and
mass in adulthood (35) and may contribute to the develop-
ment of osteoporosis, a prevalent metabolic bone disease
characterized by low bone mass and a resultant increased
susceptibility to fracture. The risk of fracture increases by as
much as 2.5- to 3.0-fold with each standard deviation (SD)
reduction in bone mass (36). Bone mass and osteoporotic
risk are under strong genetic control (37), and the VDR gene
has been studied widely as an osteoporosis candidate gene.

Most reports have examined the association between the
Bsml polymorphism and bone mass. An initial study by
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Morrison et al. (19, 20, 38) documented about 0.5 SD or 8
percent lower (p < 0.01) spine bone mass in a sample of pre-
and postmenopausal Australian women with the BB com-
pared with bb genotypes. These findings were confirmed in
some, but not all, subsequent studies (37). In a meta-analy-
sis of 16 reports published through July 1996 and involving
over 3,600 subjects, the BB genotype was associated with
0.2 SD or 2.4 percent lower hip (p = 0.03) and 0.2 SD or 2.5
percent lower spine (p = 0.06) bone mass compared with
the bb genotype (20). More recently, Gong et al. (39) per-
formed a qualitative meta-analysis of 75 reports and
abstracts published up to January 1997 and involving more
than 14,000 individuals. They concluded that VDR alleles
(B, A, t) were associated with lower hip and spine bone mass
more often than the expected 5 percent false-positive rate
under the null hypothesis (39). Studies were more likely to
find a significant association between VDR alleles and bone
mass among premenopausal than postmenopausal women or
pre- and postmenopausal women combined and less likely
to find a significant association if they included osteoporotic
subjects. This suggests that the major effect of VDR geno-
type may be on peak bone mass rather than on age- or
menopause-related bone loss.

Bone mass in the elderly is a product of both peak skele-
tal mass achieved during the first 3 decades of life and sub-
sequent age- and menopause-related rates of bone loss.
Although less well studied, allelic variants of the VDR
gene have not been consistently associated with rates of
bone loss among postmenopausal women. Three (40-42)
of eight studies (22, 23, 40-45) have found significantly
greater postmenopausal bone loss associated with the B
allele. Three studies did not find a significant association
between the Taql polymorphism and bone loss (22, 44,
46), although we documented a significantly greater rate of
hip bone loss among older (>70 years), but not younger
(<70 years), African-American women with the tt geno-
type (23). Most studies had fewer than 100 subjects and
less than 2 years of follow-up and may have lacked ade-
quate statistical power to detect differences between geno-
types. For example, a more than twofold greater rate of
spinal bone loss among postmenopausal women (n = 109)
with the BB or tt genotype did not achieve statistical sig-
nificance in one study (22). Postmenopausal Mexican-
American women with the Fokl ff genotype experienced
significantly greater hip bone loss compared with women
with either the Ff or FF genotypes (11), although this find-
ing was not confirmed in a subsequent study of Caucasian-
American women (47).

Two (48, 49) of eight studies (48-55) have demonstrated
a significant difference in VDR genotype or haplotype dis-
tribution between osteoporotic patients and controls. Most
studies included fewer than 100 cases, so it is possible that
small differences in genotype frequencies were missed. The
largest study to date (49) found that the homozygous BAt
haplotype was significantly more prevalent among 176
osteoporotic Italian women compared with 144 controls (24
vs. 8 percent, respectively; p < 0.01), whereas the homozy-
gous baT haplotype was less common among osteoporotic
women (7 vs. 18 percent, respectively; p < 0.01).

More recent studies have focused on the Fokl variant in
exon 2. Initial reports of this polymorphism found 11-12
percent (approximately 1 SD) lower bone mass at the hip
and spine in Japanese (12), Mexican-American (11), and
Caucasian-American (56) women with the ff compared with
FF genotypes. Subsequent reports have not confirmed sig-
nificant associations between the Fokl variant and bone
mass, and differences between homozygous genotypes have
generally been much smaller (approximately 2-5 percent or
<0.3 SD) (13, 17, 18, 57-61). Most studies have lacked suf-
ficient statistical power to detect differences of this magni-
tude. Moreover, ethnic (genetic) background may modify
the effects of this polymorphism (56). There may also be
effect modification by unlinked loci (modifier genes) (62)
and environmental factors such as dietary calcium intake
(42, 63-65) that remain to be fully explored.

The physiologic mechanisms mediating the associations
between VDR gene variants and bone mass are unclear but
are probably due to established actions of vitamin D on cal-
cium homeostasis. For example, 1,25(OH)2D and its recep-
tor mediates active intestinal calcium absorption (66), and
calcium absorption has been reduced in subjects with the
BB genotype (23, 67, 68) and homozygous BAt haplotype
(68, 69). These associations may be more pronounced
among subjects with low dietary calcium intake (67).
Premenopausal women with the BAt haplotype had 11 per-
cent lower (69) and postmenopausal women had 37 percent
lower (68) calcium absorption compared with women with
the baT haplotype (p < 0.05). Thus, the effect of VDR gene
variation on calcium absorption may also be modified by
age or hormonal status. An additive effect of Fokl alleles on
calcium absorption has also been demonstrated among chil-
dren (70). Calcium absorption was 41.5 percent greater in
children who were FF than ff homozygotes and was 17 per-
cent greater in heterozygotes (70). However, associations
between VDR genotype and calcium absorption have not
been confirmed in all studies (71-73). Nevertheless, these
results suggest that there may be VDR genotype-dependent
differences in intestinal sensitivity to 1,25(OH)2D.

Osteoporotic fracture

There have been relatively few studies of VDR gene
variants and the risk of osteoporotic fractures (table 1). An
ecologic analysis of 14 published studies suggested that
higher population frequencies of the TT genotype are
associated with lower, age-adjusted hip fracture rates (79),
consistent with studies showing that this polymorphism is
associated with greater bone mass. Feskanich et al. (74)
found a 2.4-fold greater risk (95 percent confidence inter-
val (CI): 1.1, 5.2) of hip fracture associated with the BB
compared with the Bb or bb genotypes in a nested case-
control study of Caucasian-American women aged 43-69
years. The increased risk of fracture associated with the
BB genotype in this study is much greater than that
expected based on the small differences in bone mass asso-
ciated with this polymorphism. Uitterlinden et al. (75) doc-
umented a relation between the number of baT haplotypes
and the risk of spine and nonspine fractures in a nested
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TABLE 1. Summary of studies examining the association between vitamin D receptor genotype or haplotype and osteoporotic
fracture

Ethnicity

Caucasian

Caucasian

Caucasian

Caucasian

Caucasian

Age
(years)

43-69

45-S8

65

55-80

>65

Gender

Female

Female

Female

Female

Female

Design

Case-control (nested)

Case-control

Prospective

Case-control (nested)

Case-cohort (nested)

No.
of

cases

54 (hip)

44 (spine)

19 (nonspine)

52 (nonspine)

163 (hip)
112 (spine)
174 (other)

No
of

controls

108

44

30

900

622
435
322

Genotype
or

haplotype

Bb/bb
BB

No. of
cases

bb
Bb
BB

Cases

bb
Bb
BB

Results

OR*

1.0
2.4

% N o

38
43
18

p=NS«

(%)

37
42
21

p=NS

95% Cl*

Referent
1.1,5.2

. of controls
(%)

36
43
20

Controls
(%)

37
37
27

baT haplotype
(alleles)

0
1
2

aaTT
AaTT
AaTt
AATt
AAtt

1.0
1 8
2.6

Hip
fracture

1.0
0.7
0.9
0.8
0.9

Referent
1.0,3.3
1.4,5.0

Referent
0.4, 1.3
0.6, 1.5
0.4, 1.4
0.5, 1.5

Comments

Cases and controls matched

No adjustments made

No adjustments made

Similar results for spine and
nonspine fracture

Association independent of
bone mineral density

Similar results for other
fracture types. Adjusted
for age and weight

Refer-
ence
no.

74

77

78

75

76

' OR, odds ratio; Cl, confidence interval; NS, not significant.

case-control study of older Caucasian-European women.
The risk of both fractures was 80 percent greater (95 per-
cent Cl: 1.0, 3.3) among heterozygous women and 2.6-fold
greater (95 percent Cl: 1.4, 5.0) among homozygous
women. The direction of the association conflicts with that
found by Feskanich et al. (74) and suggests that different
alleles may be associated with fracture in different popula-
tions (i.e., allelic heterogeneity). Interestingly, the
increased risk of fracture associated with the baT haplo-
type was independent of bone mass, raising the possibility
that factors other than low bone mass explain the associa-
tion between VDR haplotype and fracture risk (75).
Nevertheless, in the largest study to date, we were unable
to confirm a relation between the Taql and Apal variants,
either alone or in combination, and the incidence of hip,
spine, or other fractures in a case-cohort study nested
within a prospective study of 9,704 Caucasian-American
women aged 65 years and older (76). Analyses stratified
by age (<75 vs. >75 years), calcaneal bone mass (<0.40 vs.
>0.40 mg/cm2), and dietary calcium intake (<640 vs. >640
mg/day) produced similar results.

The relation between the Fokl variant and fracture risk
has been less well studied. Gennari et al. (61) found that the
ff genotype was overrepresented among postmenopausal
women with vertebral fractures (25 percent) compared with
controls (11 percent), equivalent to an odds ratio of 2.6 (95
percent Cl: 1.4, 4.9). These findings have not been repli-
cated in other populations yet.

Gene-environment interactions

The risk of osteoporosis associated with VDR genotype
may be modified by age, diet, and other lifestyle factors.
Failing to account for such interactions may mask an asso-
ciation with VDR genotype. For instance, an increased
risk of hip fracture associated with the BB genotype was
greatest among women who were older, leaner, and less
active and among those with lower dietary calcium intake
in one study (74). Other small clinical trials found that
VDR genotype is associated with the bone mass response
to vitamin D supplementation (80, 81). Two exercise
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intervention studies (82, 83) did not find significant VDR
genotype differences in changes in bone mass, perhaps
because of their small sample size (<35 subjects). Larger
trials will be necessary to convincingly demonstrate that
VDR genotype influences the response to dietary or
lifestyle modifications. Nevertheless, research addressing
the influence of gene-environment interactions may sug-
gest novel strategies for preventing or delaying the onset
of this disease.

Gene-gene interactions

The association between VDR gene variation and risk of
osteoporosis may also be modified by allelic variation in
other candidate genes. For example, Willing et al. (62)
found that the Bsml polymorphism alone was not signifi-
cantly associated with bone mass at the spine among pre-
menopausal Caucasian women. However, bone mass was
15 percent, or more than 1 SD, lower among women with
the BB genotype who were also homozygous for the
absence of a PvuII variant in intron one of the estrogen
receptor alpha gene (j? < 0.05 for interaction). In another
report, a complex interaction between the two-locus VDR-
estrogen receptor alpha genotype and hormone replacement
therapy in modifying calcaneal ultrasound measures was
documented (84). These interactions are biologically plau-
sible because estrogen can increase the number and expres-
sion of VDR in osteoblast (85, 86) and duodenal mucosa
cells (87). The risk of fracture per copy of the baT haplo-
type was 1.1 (95 percent CI: 0.7, 1.6) among women with
the G/G genotype at an Spl binding site in the type Ia l col-
lagen gene and 2.6 (95 percent CI: 1.6, 4.5) among those
with the G/T or T/T genotype (p < 0.05 for interaction)
(75). Thus, the influence of VDR genotype on osteoporotic
risk may depend on the presence or absence of allelic vari-
ants at other unlinked loci.

Summary

Bone mass is under strong genetic control, but the spe-
cific genes and allelic variants contributing to bone mass
and osteoporotic risk are not well defined (37). The VDR
gene has been widely studied as an osteoporosis candidate
gene during the past several years, with most reports focus-
ing on a Bsml restriction fragment length polymorphism in
intron 8. The homozygous absence of this site has been
associated with a small decrease (2 percent) in bone mass
in a large meta-analysis and with an increase in hip fracture
risk in one study, although attempts to replicate these later
findings have been unsuccessful. A potentially functional
Fokl polymorphism in exon 2 has also been associated with
modest differences in bone mass in some studies and with
vertebral fracture risk in one report, although, again, these
findings have been inconsistent. The strength of association
with VDR polymorphisms has been modified by molecular
variation in other genes and other risk factors such as age
and dietary calcium intake in some reports. This suggests
that VDR allelic effects may be context dependent and that
there may be larger VDR effects in certain subgroups in the
population.

VITAMIN D RECEPTOR ALLELIC VARIANTS AND
OTHER DISEASES

Cancer

Vitamin D can inhibit cancer cell growth, angiogenesis,
and metastasis (88), and recent reports suggest that common
VDR gene variants may be associated with the risk of
prostate and breast cancer. At least 10 published reports
have examined the relation between VDR allelic variants
and prostate cancer (table 2). Initial reports found a 70-80
percent lower risk of prostate cancer associated with the
Taql tt genotype (89) or short poly(A) alleles (90).
Subsequent studies have been inconsistent and generally
have not confirmed an association between these polymor-
phisms and the overall risk of prostate cancer (91—93, 96,
98). However, associations were stronger for more advanced
disease in some reports (90, 91), suggesting that VDR allelic
variants may influence the progression, rather than initia-
tion, of prostate cancer.

Vitamin D may also play a role in normal prostate growth
(99), and one recent study demonstrated an association
between the VDR Bsml polymorphism and risk of benign
prostatic hypertrophy (97). Thus, inclusion of men with
benign prostatic hypertrophy as controls may have masked
or attenuated an association between VDR polymorphisms
and prostate cancer in some studies.

At least seven studies have examined the association
between VDR allelic variants and breast cancer risk (table
3). An initial report found nearly fourfold greater risk of
breast cancer associated with the homozygous presence of
the Bsml site among Japanese women (105), which is con-
sistent with the threefold increases in prostate cancer risk
among Japanese men with this VDR genotype (97).
Subsequent reports have demonstrated similar (more than
twofold) increases in breast cancer risk among women
homozygous for the presence of the Apal (101), Fokl (26),
or short poly(A) alleles (100), although these findings have
not been universal (100,101), and in one study, the homozy-
gous presence of the Bsml site was associated with a
decreased risk of breast cancer among Latina women (100).
In two studies, an association was found for VDR genotype
and metastatic, but not overall, disease risk (103, 104), sug-
gesting that VDR allelic variants may influence tumor pro-
gression rather than development.

Osteoarthritis

Vitamin D receptor allelic variants have also been associ-
ated with prevalent osteoarthritis in some studies. The pres-
ence of the baT haplotype (106) or T allele (107) was associ-
ated with an approximately 2.5-fold increase in the risk of
knee osteoarthritis, which was independent of age, body mass
index, and bone mass in two case-control studies. This rela-
tion was explained largely by an association with osteophytes
rather than joint space narrowing in one study (106), suggest-
ing that VDR genotype may influence particular features of
osteoarthritis. Biologic support for this association comes
from studies showing that serum levels of vitamin D are
related to the progression of knee osteoarthritis (108) and that
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TABLE 2. Summary of studies examining the association between vitamin D receptor genotype and prostate cancer

m
•51

a
§

V
ol

22
"

z
p
JO2000

Ethnicity

Caucasian

Caucasian

Caucasian (90%)

Caucasian (>95%)

Caucasian (92%)

Caucasian

African-American

Japanese

No.
of

cases

95 consecutive prostatectomy cases
identified at hospitals.
Age not specified

57 cases diagnosed between 1991
and 1992 identified by SEER*
registry. Mean age = 58 years.

41 cases of fatal, metastatic PCa*
(20 hereditary)

Mean age at diagnosis = 64 years

372 cases in the Physicians Health
Study ascertained by
questionnaire and confirmed by
medical chart review. Age 40—84
years.

77 biopsy-proven cases identified
through urology and radiation
oncology practices. Age £50 years.

132 histologically confirmed cases of
PCa identified consecutively at
two hospitals. Cases were
considered sporadic if they did
not have an affected first-degree
relative and had £1 affected distant
relative. Mean age = 68 years
(range, 46-90 years)

151 new diagnosed cases in the
Hawaii-Los Angeles Multi-Ethnic
cohort were ascertained through
linkage to the SEER registry.
Mean age £67 years.

66 cases. Ascertainment methods not
described. Mean age = 68 years
(range, 57-84).

No.
of

controls

162 urology clinic patients presenting
with BPH* or impotence and no
history of cancer other than
nonmelanoma skin cancer. Age
not specified.

169 controls enrolled in a bladder
cancer study. Mean age = 58
years.

41 urology patients who participated
in a screening program for PCa.
No evidence of PCa on PSA*
tests. DRE* and/or needle biopsy
Mean age = 62 years.

591 controls selected from the same
cohort who had not had a
prostatectomy and not developed
PCa at the time the case was
diagnosed. Cases and controls
were matched on age and smoking
status. Age, 40-84 years.

183 community controls matched on
age, race, and zip code. Men
with history of cancer (other
than nonmelanoma skin cancer),
prostate disease, or prostate
surgery were excluded. Age 250
years.

105 controls without evidence of
PCa on PSA tests and DRE. Mean
age = 71 years (range, 64-86
years).

174 nondiseased cohort members
were randomly selected as
controls. Mean age = 64 years.

60 urology patients without evidence
of PCa on PSA tests and DRE.
Mean age = 71 years (range,
64-86 years).

Genotype

TT/Tt
tt

LL
LS
SS

TT/Tt
tt

LL/LS
SS

bb
Bb
BB

TT
Tt
tt

TT
Tt
tt

LL
LS
SS

TT
Tt
tt

LL
LS
SS

bb
Bb
BB

LL
I Q
Lo

SS

TT
Tt/tt

Results

OR*

1.0
0.3

1.0
0.2
0.2

1.0
1.4

1.0
1.3

1.0
0.9
0.9

1.0
0.9
0.9

1.0
0.6
0.9

1.0
0.7
1.0

1.0
0.5
1.2

1.0
2.3
1.6

1.0
1.0
0.9

1.0
1 A

1.1

1.0
0.8

95% Cl*

Referent
0.1,0.7

Referent
0.1,0.8
0.1,0.8

Referent
0.4, 4.5

Referent
0.4, 4.3

Referent
0.7, 1.2
0.6, 1.3

Referent
0.7, 1.3
0.6, 1.4

Referent
0.3,1.2
0.4, 2.0

Referent
0.3,1.4
0.4, 2.0

Referent
0.3, 0.9
0.5, 2.7

Referent
1.0,5.0
0.7, 2.6

Referent
0.5, 2.1
0.4, 1.8

Referent
n R Q 1
U.O, O. 1

0.5, 2.4

Referent
0.3, 1.6

Comments

No exposures assessed. Genotype not
correlated with age, stage, or age at
diagnosis

No exposures assessed
Stronger association with advanced cancer.

No exposures assessed.
Similar results for hereditary and non-
hereditary cases.

57% (95% Cl, 0.19, 0.98) reduction in risk for
the BB vs. bb genotype among men with
low 25(OH)D* levels (p = 0.04 for
interaction for Taql.

No exposures assessed. Similar results for
advanced PCa.

No exposures assessed. No association with
Fokl genotype.

No exposures assessed. BB genotype
associated with a 2.6-fold (1.0, 6.7) greater
risk of advanced PCa compared with bb
genotype. Bsml genotype not associated
with localized PCa.

No exposures assessed. Men with metastatic
disease and t allele had better progression-
free survival than men with the T allele.
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no.
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vitamin D receptors are expressed in chondrocytes (109), a
cellular component of osteophytes (110). In contrast to these
findings, the Taql T allele was associated with a decreased
risk of spine osteoarthritis (111), and the Bsml variant was not
significantly associated with hip osteoarthritis (total hip
replacement) (112) in other studies. These studies are limited
by their cross-sectional design, small sample size, and focus
on Caucasian subjects. Prospective studies in larger and more
diverse populations are needed to test whether VDR geno-
types and haplotypes are associated with the incidence and
progression of radiographically defined osteoarthritis.

Hyperparathyroidism

The vitamin D receptor mediates the inhibitory effects of
vitamin D on parathyroid hormone (PTH) secretion (113) and
parathyroid cell proliferation (114, 115). Recent studies sug-
gest that VDR gene variants may be associated with primary
hyperparathyroidism (116-120), a common disease often
caused by benign parathyroid adenoma or parathyroid hyper-
plasia and accompanied by excessive PTH secretion (121).
Carling et al. (116, 118) found that the b, a, and T alleles were
significantly more common among patients with primary
hyperparathyroidism than among age-matched controls. The
estimated risk of primary hyperparathyroidism was 2.5-fold
greater (95 percent CI: 1.3, 5.1) among women with the baT
haplotype compared with those without diis haplotype (118).
Consistent with these findings, PTH messenger RNA levels
were nearly 60 percent higher among patients with the baT
haplotype compared with those with other haplotypes (119).
The presence of the Bsml (122, 123) and Apal (124) restric-
tion sites has also been associated with elevated PTH levels in
patients with end-stage renal disease, suggesting that VDR
gene variants may influence the development or severity of
secondary hyperparathyroidism in such patients.

Diabetes

Transmission disequilibrium testing in 93 Indian families
revealed that the b allele and bT and bAT haplotypes are
preferentially transmitted from parents to offspring affected
with type I diabetes (125). Insulin secretion was 30-50 per-
cent lower (p < 0.05) in nondiabetic Bangladeshi Asians
with the bb, aa, or TT genotypes compared with the BB, A A,
or tt genotypes, respectively (126). These results are consis-
tent with the presence of vitamin D receptors in pancreatic
(3-cells (127) and with studies showing that vitamin D defi-
ciency impairs insulin secretion (128) and that vitamin D
treatment prevents the development of type I diabetes in the
nonobese diabetic mouse model (129).

Coronary artery disease

The risk of prevalent electrocardiogram-confirmed
myocardial infarction increased by 20 percent (95 percent
CI: 1.0, 1.5) per copy of the baT haplotype in a population-
based study of men and women aged 55-80 years (130).
This association was independent of traditional risk factors
for myocardial infarction, including age, obesity, and serum
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TABLE 3. Summary of studies examining the association between vitamin D receptor genotype and breast cancer

Ethnicity

Japanese

African American

Caucasian

Caucasian

Caucasian

Caucasian

•51

Latina

roro

p
jo
ro
o
o
o

No.
of

cases

No.
of

controls

Results

o

N

Q.
0)

60 cases. Age not reported.

102 cases. Age not reported.

88 consecutive cases recruited
through radiation oncology center.
50 were newly diagnosed 38
were recurrent cases. Age not
reported.

120 age-matched controls. Age not
reported.

155 randomly sampled controls from
cohort. Age not reported.

167 women in an osteoporosis
prevention trial in same
geographic area as cases. Age
not reported.

135 women previously diagnosed with 110 women without a personal or
BrCa* and without a known
family history of BrCa were
recruited through a pathology
department. Mean age = 60
years (range, 31-88 years).

111 women aged 24—36 years
(median, 34) diagnosed with
BrCa between 1980 and 1993.

family history of any cancer were
recruited from the same
community. Mean age = 50 years
(range, 20-81 years).

130 female blood donors aged 19-64
years (median, 37 years).

951 women with BrCa identified 627 randomly selected women from
through 2 sources: incident
patients attending hospital (mean
age = 53 years; range, 29-71);
retrospectively ascertained
patients identified through cancer
registry (mean age = 47 years;
range, 25-55 years)

143 women with newly diagnosed
BrCa ascertained through
linkage of the Hawaii Los Angeles
Multi-Ethnic Cohort to the
SEER* registry. Mean age =
65 years (range, 45-75).

the European Prospective
investigation of Cancer (EPIC)
cohort. Mean age = 51 years
(range, 40-76 years).

Genotype

BB/Bb
bb

ff/Ff
Ff

BB
Primary

cases bb
Metastatic
cases bb

AA
Aa
aa

Cases

tt
Tt
TT

tt
Tt
TT

OR"

1.0
3.9

1.0
0.4

1.0

0.9

3.8

1.0
1.5
2.5

(%)

16.2
53.2
30.6

P =

1 0
1.0
1.9

95% Cl*

Referent
1.6,9.3

Referent
0.2, 0.7

Referent

0.4,1.8

0.9, 15.4

Referent
0.8, 2.8
1.2,5.4

Controls

17.7
50.8
31 5

NS*

Referent
0.8, 1.2
0.8, 1.4

Comments
Reference

no.

300 women without BrCa in cohort
were randomly sampled. Mean
age = 63 years (range, 45-75
years).

BB
Bb
bb

LL
LS
SS

1.0
0.6
0.4

1.0
1.5
3.2

Referent
0.4, 0.9
0.2, 1.0

Referent
1.0,2 3
1.5,6.9

No exposures assessed.

No exposures assessed.

No exposures assessed.

No exposures assessed.

105

26

103

101

No exposures assessed. No overall association
with TaqI genotype. TT genotype associated
with increased risk of lymph node
metastases (1.8; 95% Cl: 1.3, 2.6).

No exposures assessed. Similar results for
analyses stratified by recruitment source.

104

102

No exposures assessed. No association
with Fokl genotype.

100

OR, odds ratio; Cl, confidence interval; BrCa, breast cancer; NS, nonsignificant; SEER, Surveillance, Epidemiology, and End Results.
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levels of total and high-density lipoprotein cholesterol.
Consistent with these findings, patients (n =41) with the bb
genotype undergoing open-heart surgery were four times
more likely (95 percent CI: 0.8, 22.5, p = 0.09) to have
severe coronary artery stenosis compared with those with
the Bb or BB genotypes (131). Biologic support for these
associations comes from studies demonstrating that vitamin
D receptors are present in aortic endothelial (132) and vas-
cular smooth muscle (133) cells.

Infectious diseases

The immune system is a well-known target of vitamin D
(134), and children with hereditary vitamin D- resistant rick-
ets may have impaired phagocytosis and neutrophil motility
and an increased number and severity of infections (135).
Moreover, administration of 1,25(OH)2D inhibits growth of
Mycobacterium tuberculosis in human macrophages and
monocytic cells in vitro (136). Bellamy et al. (137) reported
that the Taql tt genotype was significantly underrepresented
in patients infected with pulmonary tuberculosis (6.6 per-
cent) and hepatitis B (7.3 percent) compared with controls
(12 percent and 14 percent, respectively). A smaller, subse-
quent study also noted a lower frequency of the tt genotype
among tuberculosis patients (6 percent) compared with their
uninfected contacts (11 percent), although this difference
did not achieve statistical significance (p = 0.49) (138).
However, there was significant interaction between 25-
hydroxycholecalciferol status and VDR genotype (138). The
combination of the TT/Tt genotypes and 25-hydroxychole-
calciferol deficiency was associated with a 2.8-fold (95 per-
cent CI: 1.2, 6.5) increased risk of tuberculosis. A similar
interaction between the Fokl ff genotype and vitamin D sta-
tus was also observed. Roy et al. (139) also found that the
Taql polymorphism is associated with susceptibility to
Mycobacterium leprae infection in general and also to lep-
rosy type. The estimated risk of tuberculoid leprosy was
threefold greater (95 percent CI: 1.5, 7.1) among Bengali
subjects with the tt compared with TT genotypes. In con-
trast, there was a 67 percent increase (95 percent CI: 1.02,
2.75) in the risk of lepromatous leprosy in subjects with the
TT compared with tt genotypes. The possibility that com-
mon molecular variation in the VDR gene makes a broader
contribution to host susceptibility to infectious diseases
merits further investigation.

Psoriasis

Psoriasis is a chronic skin disease characterized by
hyperproliferation of keratinocytes and inflammation (140).
The observations that keratinocytes contain receptors for
1,25(OH)2D (141) and that active metabolites of vitamin D
inhibit proliferation of these cells (142) prompted recent
studies of the association between VDR allelic variants and
psoriasis (143-145). The frequency of Apal A allele was sig-
nificantly more common among 104 psoriatic Korean
patients (0.317) compared with 104 controls (0.168), equiv-
alent to a 2.4-fold (95 percent CI: 1.3, 4.3) increase in dis-
ease risk among subjects with the Aa genotype and fivefold

(95 percent CI: 1.3, 19.1) increase in risk among those with
the AA genotype (143). The age of onset of psoriasis was
19.1 years in patients with the AA genotype compared with
21.5 years in heterozygous subjects and 29.3 years in those
with the aa genotype (p < 0.05). However, Mee and Cork
(146) did not demonstrate an association between the Bsml
polymorphism and psoriasis (175 cases) or response to cal-
cipotriol in 92 patients with chronic psoriasis. Likewise,
Kontula et al. (145) were unable to document a difference in
Bsml allele and genotype distribution between psoriatic
patients who did {n = 10) and those who did not (n = 9)
respond to topical calcipotriol treatment.

Summary

In addition to bone mass and osteoporotic risk, VDR poly-
morphisms have been associated with several other dis-
eases, including breast and prostate cancer, osteoarthritis,
hyperparathyroidism, coronary artery disease, psoriasis, and
infection. More recent reports also suggest a possible asso-
ciation between molecular variation in the VDR gene and
multiple sclerosis (147), sarcoidosis (148), early-onset peri-
odontal disease (149), and nephrolithiasis (150), although
these later studies have included few cases, and replication
of these findings in larger populations and other ethnic
groups is clearly needed.

There is also a need to explore the relation between VDR
genotype and other malignancies. For instance, the homozy-
gous presence of the VDR Fokl site was recently associated
with a 70 percent increase (95 percent CI: 1.1, 2.6) in the
risk of malignant melanoma (151), consistent with the
expression of VDR in normal and malignant melanocytes
and the antiproliferative effects of 1,25 (OH)2 vitamin D on
these cells in vitro (88). Vitamin D influences the prolifera-
tion and differentiation of other malignant cell lines, includ-
ing colon and leukemia (88). Thus, investigations of VDR
genotype and the development and progression of these
other malignancies may be an important future endeavor.

The effect of VDR polymorphisms on disease risk may be
context dependent, and few studies to date have examined
possible interactions between VDR polymorphisms and
environmental exposures. The Physicians Health Study, for
example, found a significant reduction in prostate cancer
risk associated with the VDR BB or tt genotypes, but only
among men with the lowest serum 25(OH) vitamin D levels
(92). Thus, future investigations of VDR genotypes and dis-
ease risk may need to assess and stratify by serum vitamin
D levels. It will also be important to test for possible inter-
actions between VDR alleles and molecular variation in
other candidate genes.

FUNCTIONAL CONSEQUENCES OF VDR ALLELIC
VARIANTS

The possible functional consequences of VDR alleles
remain unclear. The Apal and Bsml variants are unlikely to
have functional consequences, since both sites are located in
the intron between exons VHI and IX and neither variant is
near the intron-exon boundaries or known to produce splic-
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ing errors. Moreover, several studies have found similar
VDR protein (73, 152, 153) and messenger RNA (mRNA)
levels (152, 154), ligand-binding affinity (152), DNA bind-
ing (152), and transactivation function (152) between Bsml
genotypes, although these observations have not been uni-
versal (119). The Taql polymorphism is also unlikely to
directly affect VDR function, since both alleles code for
isoleucine at amino acid 352.

Several studies have also examined the association
between the common BsmVApaVTaql haplotypes and VDR
function. Morrison et al. (19) showed that COS-7 and rat
osteosarcoma cells transfected with reporter gene constructs
containing the baT haplotype had significantly lower
luciferase activity than did those with the BAt haplotype.
Consistent with these observations, the baT haplotype has
been associated with significantly lower VDR mRNA levels
in parathyroid adenomas of patients with primary hyper-
parathyroidism (119). In contrast to these studies, Beaumont
et al. (155) recently demonstrated significantly greater
luciferase activity with reporter gene constructs containing
the baT haplotype in transfected human osteoblast and
osteosarcoma cell lines. One possible explanation for these
inconsistent findings may be that the effect of VDR allelic
variants on VDR function is tissue and/or species specific.

The Fokl variant remains a candidate functional poly-
morphism. Colin et al. (156) found that phytohemoglutinin-
stimulated growth of peripheral blood monocytes differs by
Fokl genotype. They demonstrated that the one-half maxi-
mal concentration for 1,25(OH)2 vitamin D inhibition of
phytohemoglutinin-stimulated growth was significantly
higher for cells containing the full-length VDR isoform (i.e.,
Ff and ff genotypes) than for those with the shorter isoform
(FF genotype). Interestingly, there were no genotype-related
differences in maximal inhibition of growth, raising the pos-
sibility that genotypic effects may be most apparent among
individuals with low 1,25(OH)2 vitamin D levels.
Transfection experiments in COS-7, HeLa, and fibroblast
cell lines have also shown that the full-length VDR isoform
has a decreased ability to induce transcriptional activation of
reporter genes in response to 1,25(OH)2D compared with
the shorter F allele isoform (12, 25), although these obser-
vations were not confirmed in another study (157). The f
allele isoform interacts with the basal transcription factor
HB less efficiently than does the F allele isoform, providing
a possible mechanism for the reduced transactivation asso-
ciated with this allele (158). The 3' poly(A) allelic variants
do not appear to alter VDR mRNA stability (159).

Summary

The 3' Bsml, Apal, and Taql polymorphisms do not appear
to alter VDR gene expression or VDR function. Disease asso-
ciations with these polymorphisms are therefore most likely
due to linkage disequilibrium with other functional variation
within the VDR gene or with another closely linked gene or
genes. The 5' Fokl polymorphism remains a potentially func-
tional variant, but does not appear to be in linkage disequi-
librium with the Bsml, Apal, or Taql polymorphisms in most
populations studied thus far. This raises the possibility that

there may be additional functional polymorphisms in the
VDR gene that remain to be characterized.

CONCLUSIONS AND FUTURE DIRECTIONS

The possible role of VDR gene variation in osteoporosis
susceptibility has been a subject of intense investigation
during the past several years. Numerous studies have found
that the homozygous absence of a Bsml restriction site in
intron 8 is associated with a modest reduction in bone mass
and possible increase in the risk of fracture; however, others
have found no such associations. Conflicting results are not
unexpected in association studies and may arise for several
reasons, including differences in ethnic (genetic) back-
ground, gene-gene and gene-environment interactions, and
the definition of the phenotype. Inappropriate selection of
controls is the major confounding factor in association stud-
ies, however, and differences in subject ascertainment may
also contribute to discrepant and sometimes spurious
results. For instance, the distribution of VDR genotypes was
not in Hardy-Weinberg equilibrium (i.e., genotype frequen-
cies were not predicted by allele frequencies) in some stud-
ies. Departures from Hardy-Weinberg equilibrium may arise
for several reasons apart from genotyping errors, including
chance fluctuations due to small samples, nonrandom mat-
ing, migration into or out of the population, selective sur-
vivorship among genotypes, population stratification, and
admixture of different ethnic groups (160). Deviations from
Hardy-Weinberg equilibrium can bias the type I error rate
such that the chance of a false-positive association increases
substantially if the proportion of homozygotes with the
high-risk allele is more common in the general population
than predicted by Hardy-Weinberg equilibrium (161).
Appropriate selection of controls is thus essential in associ-
ation studies, but can be difficult due to unrecognized con-
founding by ethnic, ancestry, or admixture differences
between cases and controls. Family-based association tests,
such as the transmission-disequilibrium test (TDT), avoid
confounding due to population stratification or admixture
(162-164), but have rarely been used in studies of VDR alle-
les (125). The TDT test compares allele frequencies in cases
with the frequencies of nontransmitted alleles in parents,
thereby eliminating the need for ethnically matched con-
trols. Recent modifications to the TDT make it a more prac-
tical tool for the study of quantitative traits such as bone
mass (165). Future investigations of VDR gene variation
should use family-based association methods to validate the
results of population-based studies.

A major difficulty in accepting the hypothesis that known
VDR allelic variants are directly responsible for the observed
associations is that none of the variants, with the possible
exception of the Fokl polymorphism, have consistently
altered VDR expression or function in vitro. The inconsistent
study results and doubtful functional significance of several
known VDR gene variants suggest that other DNA sequence
variation within the coding or regulatory regions of the VDR
gene should be sought. Identifying die functional variant(s)
will be a challenging task. Sequencing the VDR gene in sub-
jects with contrasting levels of bone mass might maximize the
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chances of detecting new functional variation. Sequencing
studies in populations with different evolutionary histories
may also help to localize the major functional variation. Such
studies will also provide a more complete picture of the
nucleotide diversity and structure of linkage disequilibrium
across the VDR gene. Statistical approaches for identifying
the probable functional variation or at least reducing the num-
ber of candidates requiring further investigation, such as mul-
tiple DNA variant association (166) and cladistic (167) analy-
sis, are available and may help to localize the functional
variation.

Interest in identifying novel functional variation at the
VDR locus is strengthened by the possible association of
VDR alleles with several major diseases. Interestingly, the
allele associated with potentially beneficial effects on bone
mass at the Bsml site (b allele) has also been associated with
an increased risk of breast and prostate cancer, atheroscle-
rotic coronary artery disease, and primary hyperparathy-
roidism in some studies. An association of the b allele with
both increased bone mass and breast cancer risk is consis-
tent with the increased rates of breast cancer among women
with high bone mass (168), raising the possibility of a
genetic link between these common conditions. The para-
doxical association of VDR alleles with high bone mass yet
increased risk of late-in-life diseases is consistent with the
antagonistic pleiotropy theory of aging, which proposed that
alleles with beneficial effects early in life will have detri-
mental effects during the later stages of life (169).
Nevertheless, understanding the potential role of VDR gene
variation in these other common, chronic conditions may
suggest new approaches to their prevention and treatment.
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