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Selenium, Zinc, and Prostate Cancer

Elizabeth A. Platz and Kathy J. Helzlsouer

INTRODUCTION

Specific interest in selenium as a preventive agent for
prostate cancer has arisen recently following the publication
of a small number of epidemiologic studies, including a
large randomized trial and a case-control study nested in a
prospective cohort, suggesting a protective effect of sele-
nium intake on prostate cancer incidence. Recent promising
findings for constituents of diet and supplements have led to
renewed interest in whether zinc, which is important for cell
growth regulation and which is found in the highest concen-
tration in the prostate gland, protects against prostate cancer.
Given that so few modifiable risk factors for prostate cancer
are known, resolving the potential impact of selenium and
zinc as preventive agents against prostate carcinogenesis
should be a high priority. We review here the evidence for
selenium and zinc protecting against prostate cancer and
suggest further lines of research for understanding their pos-
sible activities.

SELENIUM

Background

Selenium is an essential nonmetal trace element found
in grains, meat, poultry, fish, eggs, and dairy products
(1). In these foods selenium occurs mostly as organic
compounds (1). Food selenium levels are largely depen-
dent on the soil content in the region in which the food-
stuff is grown (2). The recommended daily allowance for
selenium is 70 |J.g/day for men and 55 |i.g/day for women
(3). Multiple vitamins that include selenium often contain
20 |ig of this element in its inorganic form (4). Selenium
supplements containing 50 to 200 jig of the element in
its organic form (e.g., yeast or selenomethionine) are
available.

Ecologic studies indicate that regions in the United States
and internationally with higher soil or plant selenium con-
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tent or higher per capita selenium intake have a lower age-
specific cancer mortality (5-10). In in vitro and in vivo stud-
ies, organic and inorganic selenium has been demonstrated
to inhibit proliferation of normal and malignant cells and
inhibit tumor growth (11) through an accumulation of cells
in metaphase and increased apoptosis (12). Apoptosis may
result from the competition of selenium for S-adenosylme-
thionine with ornithine decarboxylase (12). The anticancer
activity of selenium has also been attributed to its being a
component of glutathione peroxidase (GPX), which protects
DNA and cell membranes (13) from peroxide damage by
catalyzing conversion of peroxides (ROOR) to hydroxy
acids (ROH) (1). Other selenium binding proteins have been
identified; some protect against oxidative damage (14) and
the function of others has not yet been characterized (15).

In vitro and in vivo studies of selenium and prostate
carcinogenesis

As for malignant cell lines from other organs, selenium
also produces dose-related growth inhibition by apoptosis in
prostate-cancer cell lines (16, 17). The apoptotic effect of
selenium is greater in androgen-sensitive than in androgen-
independent cell lines (17). Apoptosis was induced to a
much smaller extent by inorganic selenium and virtually not
at all by organic selenium in a primary culture of normal
prostate cells (17). Experimental data are not entirely con-
sistent, however. The incidence of prostate tumors (all were
in situ) in a carcinogen-induced rat model was not reduced
when selenium was administered in the diet for 40 weeks at
doses comparable to that in a rodent study showing a bene-
ficial effect on mammary tumors (18). Whether this incon-
sistency is due to model idiosyncrasies or to differences in
the dose of selenium that reaches the prostate versus the
mammary gland requires further study.

Whether selenium is especially important for preventing
prostate carcinogenesis relative to cancer in general is under
study. Androgenic stimulation, which promotes proliferation,
increases oxidative burden in prostate cancer cells (19) and,
likely, in normal prostate cells. Thus, intraprostatic produc-
tion or the availability of antioxidant enzymes such as GPX
may be essential for preventing mutations in these cells. In the
prostate, GPX is found in moderate concentrations in basal
cells and in high concentrations in stromal cells, but very lit-
tle is found in secretory epithelium or in adenocarcinoma
(20). This finding possibly indicates protection against muta-
tion in the basal cells that are the precursors for prostate
epithelium. These precursor cells are those that retain the
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greatest proliferative potential. This finding also suggests that
GPX loss may be a step in carcinogenesis.

Both normal and malignant prostate epithelium contain
higher selenium levels than stromal tissue (21). The high lev-
els of selenium in prostate epithelium may be incorporated in
non-GPX selenium-binding proteins. One such protein of
molecular mass 15 kDa, which was present in greater levels
in the rat prostate than in other tissues, preferentially incorpo-
rates selenium over GPX during selenium deficiency (22).
This observation possibly suggests the importance of this
selenium-binding protein in the prostate (22). Normal
prostate cells and slow-growing androgen-sensitive prostate
cancer cells, but not fast-growing androgen-independent
prostate cancer cells, express a selenium-binding protein of
56 kDa (SP56). SP56 may modulate epithelial cell growth
(15). The gene encoding SP56 is down regulated when andro-
gen is added to cultures of an androgen-sensitive prostate-
cancer cell line (15). Further work is needed to define the
prostate-specific activities of selenium both in the ameliora-
tion of oxidative damage and in the modulation of epithelial
cell growth in the presence and absence of androgen.

Epidemiologic studies of selenium and prostate cancer

Findings from epidemiologic studies using a number of
designs and with good exposure assessment together gener-
ally support that selenium is inversely related to prostate
cancer incidence and mortality (table 1). Although limited
by lack of individual-specific exposure information and
temporal uncertainty, some (7-9), but not all (9, 10) eco-
logic studies suggest an inverse correlation between sele-
nium and prostate cancer mortality. No association has been
observed for dietary selenium intake and prostate cancer in
case-control studies (23-26). Because of variability in food
selenium content, selenium intake derived from question-
naires, recalls, or histories may be subject to non-differential
misclassification (14). This source of error might have
accounted for the null results of these dietary studies.

Prospective designs, including trials, with adequate expo-
sure assessment are generally preferred for studying nutri-
ents in relation to disease. A 65 percent reduction in prostate
cancer incidence among men randomized to a selenium sup-
plement was found in a secondary analysis of the Nutritional
Prevention of Cancer Study (27) (table 1). In this trial, 1,312
patients with non-melanoma skin cancer residing in low sele-
nium regions, of whom 980 were men, were randomized to a
brewer's yeast supplement that provided 200 \ig of selenium
daily (nearly three times the recommended daily allowance)
or placebo for 10 years. In a subsequent analysis excluding
men who might have had occult prostate cancer at baseline
(n = 974), the inverse association was even stronger (relative
risk (RR) = 0.26, p = 0.009) (28). Compared with men who
received the placebo, prostate cancer risk was strongly
reduced in men receiving the supplement and whose baseline
plasma selenium concentration was in the bottom (RR =
0.08) or middle (RR = 0.30) thirds of the distribution (28).
Prostate cancer risk was reduced for both local and advanced
stage tumors. The beneficial effect of selenium on prostate
cancer appeared after only a few years of supplementation.

Clark et al. (27) hypothesized that because selenium appears
to inhibit promotion and progression of tumors in vitro and
in vivo, selenium might rapidly diminish the incidence of, or
mortality from cancer. Thus, it is possible that their observa-
tion of the rapid decline in incidence is consistent with an
effect of selenium, rather than due to bias or chance.

Following the publication of the results of the trial of
Clark et al., several controversial issues were raised that
potentially influenced the interpretation of the trial's find-
ings. The investigators had not specified that the rates of
total or site-specific non-skin cancers would be an outcome
prior to the start of the trial. To one editorialist (29), this
raised the concern that the decreased rates for total and cer-
tain cancer sites that were seen after a midway analysis
(1983-1989) might be merely chance observations.
Nevertheless, similarly reduced rates of cancer were also
observed during the last years (1990-1993) of the trial,
including that for prostate cancer (27). The supplement
group had reduced rates of some, but not all cancers.
Because many comparisons were made, this led to the ques-
tion of whether the likelihood of detecting chance findings
was increased, especially for those sites (such as the
prostate) for which at the time there was very little evidence
for a benefit of selenium (29). Nevertheless, subsequent
studies addressing selenium and prostate cancer have sup-
ported the findings of the trial.

Another critique was that several of the site-specific can-
cer rates in the placebo group of the Nutritional Prevention
of Cancer Study were well above the rates reported in the
United States Surveillance, Epidemiology, and End Results
program, whereas rates in the supplement group were closer
to the national rates (30). The authors countered that cancer
rates in the population selected for enrollment in this trial
were likely higher than the average US rates because partic-
ipants lived in areas with low soil selenium and each had a
prior history of skin cancer (31). Thus, supplementation
lowered their rates to background (31). The study did not
address the effect of withdrawals due intolerance of the
yeast-containing selenium supplement (32). However, it is
difficult to construct a scenario whereby those who had
yeast intolerance are also those who had a higher risk of can-
cer. A decrease in the occurrence of cardiovascular disease
was not seen in the selenium supplement group, although
inorganic selenium increases bleeding time (32). One com-
mentator felt that the lack of an effect on cardiovascular dis-
ease called into question whether the dose of selenium given
in the trial was biologically effective (32). However, the
lack of an effect on cardiovascular disease does not preclude
a beneficial effect on cancer risk at this dose because the
mechanisms of action for selenium underlying protection
are not necessarily the same for these two chronic diseases.

In a secondary cohort analysis of the Alpha-Tocopherol,
Beta-Carotene Cancer Prevention Study (33), no association
between baseline selenium intake and prostate cancer (n =
317) was found during 9 years of follow-up of 29,133 older
male smokers. Baseline selenium supplement use, which is
not subject to the same degree of non-differential measure-
ment error as exists for dietary selenium, unexpectedly was
associated with a slight increased risk of prostate cancer. The
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TABLE 1. Epldemiologic studies of selenium and prostate cancer

I

o

8
o

Author Study design Study location and size Selenium assessment Results

Shamberger et al. (7), 1976

Schrauzer et al. (9), 1997

Clark etal. (10), 1991

Hardell et al. (46), 1995

Key et al. (24), 1997

Lee et al. (25), 1998

West et al. (23), 1991

Jain et al. (26), 1999

Ghadirian et al. (47), 2000

Willettetal. (41), 1983

Knekt et al. (43), 1990

Criqui et al. (44), 1991

Coates et al. (42), 1998

Yoshizawa et al. (39), 1998

Nomura et al. (45), 2000

Helzlsouer et al. (40), 2000

Hartman et al. (33), 1998

Clark et al. (27), 1996;
(28), 1998

Ecologic

Ecologic

Ecologic

Case-control

Case-control

Case-control

Population-based
case-control

Population-based
case-control

Population-based
case-control

Nested case-control

Nested case-control

Nested case-control

Nested case-control

Nested case-control

Nested case-control

Nested case-control

Cohort

Trial

48 US states

27 countries

22 countries

19 US states

US counties

Sweden: 164 cases,
152 benign prostate
hyperplasia (BPH*)
controls

United Kingdom: 328 cases
328 controls

China: 398 cases,
265 controls

United States: 358 cases,
679 controls

Canada: 617 cases, 636
controls

Canada: 83 cases, 82
controls

United States: 11 cases,
210 controls

Finland: 51 cases,
2,192 controls

North America: 6 cases,
238 controls

United States: 13 cases,
287 controls

United States: 181 advanced
cases, 181 controls

Hawaii: 249 cases,
249 controls

United States: 117 cases,
233 controls

Finland: 317 cases in
29,133 older male
smokers, 9 years of
follow-up

United States: 48 cases in
974 men with non-
melanoma skin cancer,
low selenium region,
10 years of follow-up

Soil and forage crops

Per capita intake

Whole blood, healthy donors

Whole blood, healthy donors

Forage crops

Plasma

Diet and supplements

Diet

Diet

Diet

Toenails

Serum

Serum

Plasma

Serum/plasma

Toenails

Serum

Toenails

Diet and supplements

200 ug/day primarily as seleno-
methionine (~3-times the
recommended daily
allowance) or placebo

Age-adjusted prostate cancer mortality rate slightly higher in states with
lower levels

Inverse correlation with age-adjusted prostate cancer mortality rate: r = -0.65,
p = 0 0001

Inverse correlation with age-adjusted prostate cancer mortality rate: r= -0.72,
p = 0.001

No correlation with age-adjusted prostate cancer mortality rate: r= -0.10,
p = 0.67

Age-adjusted prostate cancer mortality rate higher (+0.7/105) in adequate
vs. low areas

Prostate cancer risk lower in the highest compared with lowest thirds:
odds ratio (OR*) = 0.3, 95% confidence interval (Cl*): 0.1, 0.7

No difference in geometric mean intake between prostate cancer cases
and controls (p = 0.23)

Risk of prostate cancer did not decrease with increasing intake: OR = 1.00,
95% Cl: 0.99, 1 04, p = 0.75

No difference in prostate cancer risk comparing highest with lowest fourths
45-67 years old: OR = 0.8, 95% Cl: 0.5, 1.4, aggressive disease OR = 1.0,

95% Cl: 0.3, 3.1
68-74 years old: OR = 1.6, 95% Cl: 1.0, 2.8, aggressive disease OR = 1.8,

95% Cl: 0.8, 4.4
No difference in prostate cancer risk comparing highest with lowest fourths:

OR = 0.93, 95% Cl: 0.68, 1.28
No difference in prostate cancer risk comparing highest with lowest fourths:

OR = 1.14, 95% Cl: 0.46, 2.83, p-trend = 0.624
Concentration lower in prostate cancer cases than in controls (p = 0.12)

No difference in prostate cancer risk comparing highest and lowest fifths:
OR = 1.15, p-trend = 0.71

Concentration lower in prostate cancer cases than in controls (p < 0.10)

Prostate cancer risk lower in the highest compared with lowest thirds:
OR = 0.3, p-trend = 0.18

Risk of advanced prostate cancer lower in the highest compared with lowest
fifths: OR = 0.39, 95% Cl: 0.18, 0.84, p-trend = 0.05

Risk of prostate cancer lower in the highest compared with lowest fourths:
OR = 0.5, 95% Cl: 0.3, 0.9, p-trend = 0.02; advanced OR = 0.3,
95% Cl: 0.1, 0.8, p-trend = 0.01

Risk of prostate cancer lower in the highest compared with lowest fifths:
OR = 0.38, 95% Cl: 0.17, 0.85, p-trend = 0.12

No difference in prostate cancer risk comparing highest and lowest fourths:
randomized to a-tocopherol: relative risk (RR) = 0.84, 95% Cl: 0.43, 1.67;
randomized to placebo: RR = 1.27, 95% Cl: 0.70, 2.20

Risk of prostate cancer lower in supplement compared with placebo group:
RR = 0.35, 95% Cl: 0.18, 0.65;

Stratified by thirds of baseline plasma selenium level, relative risk for
supplement vs. placebo: lowest third, RR = 0.08, p = 0.002; middle third,
RR = 0.30, p = 0.03; highest third, RR = 0.85, p = 0.75
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authors hypothesized that differences in prostate cancer risk
factors associated with the propensity to use supplements,
but not accounted for in the analysis, could explain the
increased risk (33). Although synergism in activity has been
reported between selenium and vitamin E in experimental
systems, the results for selenium and prostate cancer were
similar between the groups randomized to oc-tocopherol or to
placebo. The disparity in findings between the Nutritional
Prevention of Cancer Trial and the observational component
of the Alpha-Tocopherol, Beta-Carotene Cancer Prevention
Study may be due to a notable difference in selenium expo-
sure (33). Prior to the start of the trial, Finland was a country
with low soil selenium concentration, although just before
the trial began, fertilizer was fortified with selenium (33).
Nevertheless, only 2 percent of the participants in the Alpha-
Tocopherol, Beta-Carotene Cancer Prevention Study had a
selenium intake at the level of the treatment dose in the
Nutritional Prevention of Cancer Trial (33).

Because assessment of selenium intake from self-reported
diet is generally poor due to variability in food content, which
depends on geographic source, determining the selenium con-
tent of biologic materials may provide a better indicator of
selenium intake. In addition, because intestinal absorption and
distribution of selenium depend on the presence of metals that
compete for uptake (34), selenium content in biologic materi-
als may be a good marker of bioavailable selenium. The rep-
resentativeness of selenium levels in biologic materials for
intake over time has been examined. Plasma/serum selenium
concentration is responsive to very recent selenium ingestion
(hours) (35), but plasma/selenium levels are also correlated
with longer-term selenium intake. In a study with multiple diet
records and biologic samples taken over 6 months or 1 year,
the correlation coefficients for selenium intake and selenium
concentrations in serum and toenails were 0.74 and 0.67,
respectively (36). In a 1 -year feeding study, toenail selenium
concentration roughly reflected the selenium intake in the pre-
vious 3 months to 1 year (37). The reliability of toenail mea-
sures over several years has been shown to be moderate. One
study observed a correlation coefficient of 0.48 for two deter-
minations of toenail selenium concentration taken 6 years
apart, although a temporal increase in selenium concentration
was seen over the period (38).

Seven prospective studies have examined selenium levels
in toenails (39,40) or in plasma/serum (41-45) in relation to
prostate cancer incidence or mortality. A 60 percent reduc-
tion in risk of advanced prostate cancer was observed in the
Health Professionals Follow-up Study comparing the high-
est with lowest fifths of prediagnostic toenail selenium (39).
Reductions in prostate cancer risk of 60 percent and 50 per-
cent were observed in a cohort of residents of Washington
County, Maryland (the CLUE II study—the name CLUE II
comes from the slogan "Give us a clue to cancer and heart
disease") (40) and a study of Japanese-American men in
Hawaii (45) comparing extreme fifths of prediagnostic toe-
nail or serum selenium concentration, respectively.
Statistically nonsignificant reductions in prostate cancer
incidence or mortality have been observed when comparing
high with low circulating baseline selenium levels in three
other studies (41, 42, 44). One prospective study conducted

in Finland, a country with low selenium intake during the
period of follow-up, showed no relation between serum
selenium levels and prostate cancer risk (43). In that study,
participants had circulating levels almost three times lower
(-50 versus -150 ng/liter) than in the other studies. One
hospital-based case-control study also observed an inverse
association between plasma selenium and prostate cancer
(46), whereas a population-based case-control study
observed no association between toenail selenium and
prostate cancer (47).

Future directions

Taken together, the epidemiologic studies that have
examined the relation of selenium and prostate cancer sup-
port a modest to moderate beneficial effect. The consistent
findings of a supplementation trial and several prospective
studies using biomarkers of selenium lend strong support
that it is selenium, rather than other unmeasured dietary con-
stituents, that is responsible for the reduction in risk of
prostate cancer (48). The null findings from the studies that
evaluated dietary selenium may have resulted from the rec-
ognized poor assessment of dietary selenium using reports
of foods consumed or to the low intake of dietary and sup-
plemental selenium in some of the study populations. Other
explanations for the inconsistent findings include variation
in exposure to potential prostate mutagens that are inacti-
vated by selenium-requiring GPX for the prevention of
cellular damage, and variation in exposure to other trace ele-
ments that by competing with selenium for binding proteins
alter the bioavailability of selenium. At this point, additional
epidemiologic studies, including cohort studies and trials,
are needed to conclude whether selenium reduces the risk of
prostate cancer. Especially informative will be studies of
large enough size to detect meaningful associations, that use
adequate exposure assessment of prediagnostic selenium
levels, and that are conducted in demographically diverse
populations with a wide range of selenium intake. In future
studies employing biomarkers of selenium exposure, inves-
tigators should be alert to avoid selenium contamination by
laboratory equipment, or for toenails by participant use of
selenium-containing shampoos (37).

Future studies must address the optimal selenium status
(defined by intake, prostate tissue levels, or levels in other
biologic materials) for the prevention of prostate cancer. The
Nutritional Prevention of Cancer Study did not examine mul-
tiple selenium supplement doses because of logistical issues
(31). Whether a benefit of increased selenium intake is
achieved may depend on an individual's usual selenium sta-
tus. In the Nutritional Prevention of Cancer Study, the effect
of the intervention was observed mainly among those with
lower baseline plasma selenium (28). Given the variability in
in vitro activities of forms of selenium, inorganic (e.g., selen-
ite versus selenate) or organic (e.g., selenomethionine versus
selenocysteine) (49, 50), the form of selenium that has the
greatest protective effect against prostate cancer must also be
examined in epidemiologic studies. In both cohort studies and
in trials, participants should be monitored for any adverse
effects of selenium over the short- and long-term.
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In vitro and in vivo studies are needed to define the spe-
cific pathways in the prostate that are influenced by sele-
nium at physiologic rather than supra-physiologic doses.
Especially important to understand is selenium's role in the
synthesis of polyamines, which are essential for cell cycle
maintenance (12). Whether selenium acts early or late in the
carcinogenic pathway should be explored further in both
population studies and the laboratory. Timing of effect has
practical implications for when selenium supplements
should be started and for how long they should be taken. For
example, from the Nutritional Prevention of Cancer Study, a
decline in incidence emerged during the first 6 years of the
intervention (27), suggesting that selenium may act late in
the pathway.

The potentially beneficial role of selenium and prostate
cancer prognosis or recurrence also deserves attention. Only
one such study, which included four prostate cancer cases,
has been published to date (51). Trials of the effect of sele-
nium on markers of progression are on-going at the
University of Arizona (50) and the Memorial Sloan-
Kettering Cancer Center (52).

The potentially beneficial joint effects of selenium and
other dietary constituents should be evaluated. Selenium
may antagonize cadmium (53), a possible prostate cancer
risk factor in occupational studies (54). Selenium may
inhibit the proliferation of prostatic epithelium induced by
cadmium in vitro, possibly by the formation of selenium-
metal complexes (55). Vitamin E, which may be inversely
associated with prostate cancer incidence (56), and selenium
act at different points in preventing membrane lipid peroxi-
dation (1). Synergism between selenium and y-tocopherol
was observed in the CLUE II study (40). No synergism was
seen for selenium and a-tocopherol in the Alpha-
Tocopherol, Beta-Carotene Cancer Prevention Study (33).
The Selenium and Vitamin E Cancer Prevention Trial
(SELECT) sponsored by the National Cancer Institute will
examine the independent and joint effects of selenium and
vitamin E (a-tocopherol) supplementation in a trial of
32,000 men over more than 12 years (57).

ZINC

Background

Zinc is a homeostatically regulated essential mineral
(58). It is a component of numerous metalloenzymes and is
important for cell growth and replication, osteogenesis,
and immunity (1). Zinc may also indirectly act as an
antioxidant by stabilizing membranes in some cell types
(34). The primary dietary sources of zinc are red meat,
seafood, poultry, grains, dairy, legumes, and vegetables
(1). The recommended daily intake of zinc is 12 mg for
women and 15 mg for men (3). Some studies have noted
lower zinc levels or intake for patients with certain cancers
compared with controls (59-61) while others have
observed no association (62-64). Trials that administered
nutrient combinations including zinc have observed a
reduced incidence of gastric cancer (65, 66). However, the
independent effect of zinc on carcinogenesis cannot be
determined from these studies.

In vitro and in vivo studies of zinc and prostate
carcinogenesis

Circumstantial evidence indicates that zinc may have an
important role in the prostate. Total zinc levels in the
prostate are 10 times higher than in other soft tissues (67,
68). The concentration of zinc in whole prostate tissue
appears to increase with increasing distance from the blad-
der (69). Others have found the highest concentrations in the
lateral lobe of the peripheral zone and the lowest levels in
the central zone (70). Zinc is concentrated intracellularly in
glandular epithelium and is bound to proteins, such as met-
alloenzymes (71). Especially high levels are found in the
prostate epithelial cell mitochondria, where zinc inhibits
mitochondrial aconitase resulting in decreased citrate oxida-
tion (72). Interestingly, malignant prostate cells have a
higher rate of citrate oxidation than do normal prostate cells,
although it is not currently believed that altered citrate oxi-
dation contributes to prostate carcinogenesis (70).

Adenocarcinoma cells taken from prostate tumors, but
not prostate cancer cell lines, lose their ability to amass zinc
(71). In response to physiologic testosterone and prolactin
levels, prostate epithelial cells rapidly uptake zinc, which is
possibly facilitated by a cell membrane transporter (71). In
vitro zinc participates in a feedback loop to maintain the
intraprostatic balance of testosterone and dihydrotestos-
terone (73). Physiologic concentrations of zinc inhibit
growth of androgen-sensitive and androgen-independent
prostate cancer cell lines via cell cycle arrest, programmed
cell death, and necrosis (74, 75), which may be initiated in
mitochondria (76). Based on these activities of zinc, it could
be hypothesized that higher zinc levels would be inversely
associated with prostate cancer risk.

Epidemiologic studies of zinc and prostate cancer

Findings for zinc and prostate cancer incidence and mor-
tality have not been consistent (table 2). An ecologic study
noted higher prostate cancer mortality in countries with
higher per capita zinc intake, although there was essentially
no correlation between whole blood zinc concentrations in
cancer-free individuals and prostate cancer mortality in
several regions in the United States (8). Modest to moder-
ate inverse associations were observed in two case-control
studies for dietary zinc (24) or zinc supplement use (77).
Other case-control studies have not observed a protective
association for dietary (23, 78) or combined dietary and
supplemental (79, 80) zinc intake. Differences in findings
among these studies may be due to different ranges of zinc
intake among the populations studied and misclassification
of zinc intake by assessing post-diagnosis diet rather than
diet in an etiologically relevant period. Another possible
source of misclassification is in the assessment of zinc
using food frequency questionnaires or diet records.
Although the correlation between zinc intake estimated
from food frequency questionnaires and diet records has
been observed to be moderate (81), both require linking
food intake with estimates of zinc content of foods. The
zinc content of certain foods, such as seafood, may be
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TABLE 2. Epidemiologic studies of zinc and prostate cancer
0)
RT
CO

Q .

I
3L
N

CD

Author Study design Study location and size Zinc assessment Results

I
ro
CO

o

Schrauzer et al. (8), 1977

Habib et al. (86), 1976

Habib et al. (89), 1980

Whelan et al. (82), 1983

Feustel et al. (90), 1986

Feusteletal. (21), 1987

Ogunlewe et al. (84), 1989

Lekili et al. (85), 1991

Key et al. (24), 1997

Vlajinac et al. (80), 1997

Zaichick et al. (87), 1997

Brys et al. (88), 1998

Lee et al. (25), 1998

Kolonel et al. (79), 1988

West et al. (23), 1991

Andersson et al. (78), 1996

Kristal et al. (77), 1999

Ecologic

Case-control

Case-control

Case-control

Case-control

Case-control

Case-control

Case-control

Case-control

Case-control

Case-control

Case-control

Case-control

Population-based
case-control

Population-based
case-control

Population-based
case-control

Population-based
case-control

28 countries

19 US states
United Kingdom: 9 cases,

23 benign prostatic hyper-
plasia (BPH*) controls

United Kingdom: 44 cases,
41 BPH controls,
12 controls

United Kingdom: 19 cases,
27 BPH controls

Germany: 17 cases, 21
BPH controls, 45 controls

Germany: 9 cases, 10 BPH
controls, 5 controls

Nigeria: 12 cases, 60 BPH
controls, 55 controls

Turkey: 26 cases, 15 BPH
controls

United Kingdom: 328 cases,
328 controls

Serbia: 101 cases,
202 controls

Russia: 59 cases, 50 BPH
controls, 37 controls

Poland: 7 cases, 16 BPH
controls, 11 controls

China: 398 cases, 265
controls

Hawaii: 452 cases, 899
controls

United States: 358 cases,
679 controls

Sweden: 526 cases, 536
controls

United States: 697 cases,
666 controls

Per capita intake

Whole blood, healthy d(
Prostate tissue

Plasma, leukocytes

Serum

Plasma, erythrocytes

Prostate tissue

Plasma, prostate tissue

Plasma

Diet and supplements

Diet and supplements

Prostate tissue

Prostate tissue

Diet

Diet and supplements

Diet

Diet

Supplements

Direct correlation with age-adjusted prostate cancer mortality rate: r= +0.51,
p < 0.05

No correlation with age-adjusted prostate cancer mortality rate: r= 0.01
Concentration lower in prostate cancer cases than in normal controls or

BPH controls (p < 0.005)

No difference in concentrations between prostate cancer cases and controls

Concentration lower in prostate cancer cases than in BPH controls (p < 0.05)

No difference in concentrations between prostate cancer cases and controls

Concentration lower in prostate cancer cases than in normal controls or in
BPH controls

Concentration lower in prostate cancer cases than in normal controls
(p < 0 001) or in BPH controls (p < 0.001)

Concentration lower in prostate cancer cases than in BPH controls (p < 0.05)

Risk of prostate cancer lower in the highest compared with lowest thirds:
odds ratio (OR*) = 0.73, 95% confidence interval (CI*): 0.49, 1.08,
p-trend = 0.13

No difference in prostate cancer risk comparing highest with lowest tertiles;
adjusted for energy: OR = 1.31, 95% CI: 0.81, 2.13, p-trend not
statistically significant; adjusted for energy and other nutrients: OR = 0.81,
95% CI: 0.28, 2.34, p-trend not statistically significant

Concentration lower in prostate cancer cases than in normal controls or in
BPH controls

Concentration lower in prostate cancer cases than in normal controls or
in BPH controls

Risk of prostate cancer did not statistically significantly decrease with
increasing intake: OR = 0.93, 95% CI: 0.73, 1.19, p = 0.56

No difference in prostate cancer risk comparing highest with lowest fourths
£70 years old: diet only OR = 1.1, 95% CI: 0.7, 1.7, p-trend = 0.62;

diet/supplements OR = 1.7, 95% CI: 1.1, 2.7, p-trend < 0.01;
<70 years old: diet only OR = 1.3, 95% CI: 0.7, 2.2, p-trend = 0.71;

diet/supplements OR = 1.2, 95% CI: 0.7, 2.2, p-trend = 0.86
No difference in prostate cancer risk comparing highest with lowest fourth
45-67 years old: OR = 1.1, 95% CI: 0.6, 1.9; aggressive disease OR = 1.0,

95% CI: 0.3, 3.2;
68-74 years old: OR = 1.3, 95% CI: 0.8, 2.3; aggressive disease OR =

1.0, 95% CI: 0.3, 2.8
No difference in prostate cancer risk comparing highest with lowest fourths;

OR = 1.04, 95% CI: 0.74, 1.46, p-trend = 0.50; advanced OR = 1.14,
95% CI: 0.77, 1.70, p-trend = 0.37

Risk of prostate cancer lower among those using supplements 27 days/
week compared with never: OR = 0.55, 95% CI: 0.30, 1.00, p-trend = 0.04

• BPH, benign prostatic hyperplasia; OR, odds ratio; CI, confidence interval.
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highly variable (1). Also, some studies did not consider in
their estimation of zinc intake the use of zinc-containing
multiple vitamins and supplements.

Use of biomarkers of zinc exposure may minimize some
of the misclassification of zinc associated with estimating
intake from food frequency questionnaires or diet records.
Absorption of zinc varies by dietary source. For example,
zinc is more bioavailable in red meat and less bioavailable
in vegetables (1). It also varies by the presence of other
dietary constituents that bind zinc to increase (e.g., citric
acid and the amino acids histidine and cysteine) or decrease
(e.g., phytate and oxalate) its uptake (1). Thus, use of bio-
markers may better reflect absorbed zinc. Because the
prostate amasses zinc, the relevance of prostate tissue levels
to zinc intake, circulating zinc levels, or toenail zinc con-
centration is unknown.

Some small case-control studies indicate lower concen-
trations of zinc in plasma/serum (82-85) or total prostate tis-
sue (21, 84, 86-88) in men with prostate cancer compared
with men without prostate disease or with benign prostatic
hyperplasia, although other small case-control studies
observed no differences (89, 90) (table 2). Several of the
epidemiologic studies of zinc and prostate cancer used zinc
biomarkers, but none of the studies was conducted prospec-
tively and, thus, the possible influence of disease pathology
on zinc levels limits the interpretability of the findings.

Future directions

The epidemiologic evidence for zinc protecting against
prostate cancer is equivocal and is based mainly on studies
of retrospective design. The disparity in findings among epi-
demiologic studies may result from several sources. Firstly,
the accuracy of assessment of zinc exposure differed; some
used self report of diet, others measured zinc content in bio-
logic specimens. Secondly, zinc levels were assessed at dif-
ferent points in the natural history of the disease and in
different biologic tissues. Thirdly, the ranges of exposure to
zinc may have varied among studies. Finally, control for
other dietary factors that are both associated with zinc and
with prostate cancer may have differed. The bioavailability
of zinc and other trace elements, such as cadmium and sele-
nium, is controlled by binding proteins called metallo-
thioneins (53, 91). Thus, the inconsistent findings for zinc
and prostate cancer might reflect the variability between
populations in exposure to other metals that compete with
zinc for binding proteins, rendering zinc more or less
bioavailable than would be indicated by measures of total
zinc content of serum/plasma or prostate tissue.

At this time, the evidence for a beneficial effect of zinc on
prostate cancer incidence is insufficient to warrant undertak-
ing randomized chemoprevention trials. Prospective studies
that employ adequate assessment of exposure to zinc and
other elements conducted in populations with wide ranges of
zinc exposure are needed to uncover whether zinc protects
against prostate cancer. At present no single biologic indica-
tor is thought to adequately reflect zinc exposure (92).
Among individuals who are not zinc deficient, the interrela-
tions of zinc intake and zinc concentrations in biologic mate-

rials, including serum/plasma, toenails, and prostate tissue,
require further characterization. The usual methods for zinc
determination in serum/plasma (59, 82, 90), toenails (60),
and prostate tissue (88) have been flame atomic absorption
spectrometry or instrumental neutron activation analysis. For
determination of zinc in toenails, the toenails must first be
cleaned to remove skin and surface contamination and then
digested. Investigators should avoid contamination of bio-
logic materials by zinc in laboratory supplies, including
blood collection tubes with zinc-containing anticoagulants
and stoppers (92). When analyzing and interpreting data,
investigators should also be aware of attributing effects to
zinc if other correlated metals are present in the diet or in bio-
logic materials.
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